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1 Introduction  

Geometry and topology optimization of truss-like structures is 

one of the standard topics in structural optimization, in which 

sizing optimization is usually included[1]. Since nodal locations 

are fixed in the ground structure method, it is reasonable to 

incorporate nodal coordinates as variables to simultaneously 

optimize geometry and topology of truss-like structures. However, 

it is difficult to modify structural topology in the process of 

geometry optimization because of the existence of coalescent 

nodes, causing singularity in stiffness matrix[2]. Therefore, 

appropriately applying side constraints on nodal locations for 

preventing melting nodes is a challenging problem.  

This study presents a method to resolve such problem by using 

force density method (FDM). The nodal coordinates of frames are 

computed as functions of force densities of an auxiliary cable net 

that has support conditions different from the frame to be 

optimized. 

2 Frame model 

Consider a plane frame discretized by beam elements with n 

nodes and m members. The stiffness equation is written as 

KU F  (1) 

where K is the structural stiffness matrix, and U and F are the 

vectors of nodal displacements and external loads, respectively. 

Let X and Y denote the vectors of x- and y- coordinates of nodes, 

and assume each member has circular cross-section. Eq. (1) can 

then be written as  

( , , ) K X Y d U F  (2) 

where d is the diameter vector of beam elements. 

3 Force density method 

Although a plane frame is to be optimized, its nodal locations 

are defined in terms of force densities of an auxiliary cable net. 

Let C denote the connectivity matrix and q denote the force 

density vector. The force density matrix Q is given as[3,4]  

diag( )TQ C q C  (3) 

where diag(q) represents the diagonal matrix of q. Support 

conditions of the cable net are different from those of the frame 

to be optimized, and the loaded nodes of the frame are included 

in the fixed nodes of the cable net. Let xfree, yfree and xfix, yfix 

denote the x- and y-coordinate vectors of free nodes and fixed 

nodes, respectively. Arrange the columns of C such that the 

columns corresponding to the free nodes precede those 

corresponding to the fix nodes, i.e., C = (Cfree, Cfix). The 

equilibrium equations of free nodes and fix nodes are written as 

free free free free fix fix

free free free free fix fix

diag( ) diag( )

diag( ) diag( )
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 

 

0

0

C q C x C q C x

C q C y C q C y
  (4) 

Therefore, coordinates of free nodes can be considered as 

functions of q.  

4 Optimal problem 

The optimization problem for minimizing the compliance 

under volume constraints is formulated as follows: 

free free free free

free free upper

Minimize   ( , , ) ( , , )

subject to ( , , )
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V V


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with side constraints  
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where Vupper is the specified upper bound for volume, nfree is the 

number of free nodes, and the subscripts ‘upper’ and ‘lower’ 

indicate the upper and lower bounds, respectively. Since 

coordinates of free nodes can be obtained by solving Eq. (4), 

optimization problem (5) is restated as 

 
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with following side constraints  
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It can be observed that optimal solutions of problems (5) and (7) 

are the same if a set of q in (5) can define the optimal solution of 

problem (7). According to the definition of force density, side 

constraints for qi in Eq. (8) can be rewritten as  

,lower ,upper , 1,2,i
i i

i

N
q q i m

L
     (9) 

where Ni and Li are the axial force and length of ith member, 

respectively. Assuming qi,lower is a small positive value ε and qi,upper 

is sufficiently large, Eq. (9) can be rewritten as 
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if Ni is not equal to 0. Hence, the length of ith element is indirectly 

controlled by side constraints of the corresponding force density. 

It is known that Eq. (4) has a solution if qi > 0 for all elements. 

5 Sensitivity analysis 

The sensitivity coefficients of objective and constraint 

functions are obtained as 
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where (∙)k,i (i=1,2) represents the two end nodes of ith element. 

Derivatives of coordinates of free nodes with respect to q are 

explicitly calculated by directly differentiating both sides of Eq. 

(4). Therefore, sensitivity coefficients of objective and constraint 

functions with respect to q and d are computed, and will be used 

in sequential quadratic programming (SQP) to solve problem (7). 

6 Further optimization 

The layout found by solving (7) may be unclear due to the 

existence of thin members and closely spaced nodes. Therefore, 

we further optimize d, xfree and yfree by solving the following 

problem: 
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free, free, free, free,
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where nfree, r and mr are the numbers of free nodes and elements, 

respectively, after merging the closely spaced nodes of the 

optimal solution of problem (7). Same procedure of sensitivity 

analysis is also carried out as described in Section 5. 

7 Example 

A cantilever frame is optimized to verify the proposed method. 

The initial ground structure, shown in Fig. 1, is a 3×2 rectangular 

grid with 12 nodes and 27 elements, which is pin-supported at 

nodes 1, 2 and 3, and a single load P is applied at node 11. 

Accordingly, these four nodes are considered as fixed nodes. Note 

that elastic modulus E is the same for all members. 

The upper-bound volume Vupper is equal to 1, ε is 0.0001, qi,upper 

is 1000, di,lower is 0.001, and di,upper is not given. Fig. 1 shows the 

optimal solutions found by solving problems (7) and (13). 

 

Fig. 1 Initial ground structure of cantilever frame. 

 

Fig. 2 Solutions before (left) and after (right) further 

optimization 

As seen from the left part of Fig.2, no extremely short member 

exists, preventing singularity in stiffness matrix. Then, the 

optimal solution is further optimized by solving problem (13), 

with removal of thin elements, and the final results is shown in 

right part of Fig.2. Compliance of optimal solutions before and 

after further optimization are 83.2042 and 82.0946, respectively, 

showing good convergence of the proposed method.          

Conclusion 

A new optimization method for plane frame is presented using 

FDM. Nodal locations can be determined by a set of linear 

equations with respect to element force density, and the problem 

of determining the nodal location in geometry optimization can 

be therefore solved by finding the corresponding force density 

values of the auxiliary cable net. Side constraints of limiting 

element length is achieved by the side constraints of force density, 

preventing difficulties of coalescent nodes. An example of 

cantilever frame is discussed to illustrated the effectiveness of the 

proposed method. 
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