

Worst-case design of plane frames using order statistics

Wei Shen¹, Makoto Ohsaki¹, Makoto Yamakawa²

- 1. Department of Architecture and Architectural Engineering, Kyoto University
- 2. Department of Architecture, Tokyo University of Science

Contents

- 1. Background
- 2. Existing challenges
- 3. Proposed method
- 4. Numerical example
- 5. Conclusions and future directions

Background

Background

Deterministic design

Uncertainty in real world

Suppose uncertainty exists in Young's modulus

Source: A. Asadpoure *et al*, Robust topology optimization of structures with uncertainties in stiffness - Application to truss structures, 2011, Computers and Structures.

Considering Uncertainty

Existing Challenges

(1) Unknown distribution of uncertainty

Two kinds of probability-based design

Minimize: $E(f(X;U)) + k\sigma(f(X;U))$

-5

-10

0

5

10

-10

-5

0

Existing Challenges

(2) Exact value of worst-case event

Handle the uncertainty with worst-case design

Hard to obtain the exact worst structural response even if Θ is simple

Existing Challenges

(3) Melting nodes

Desirable to avoid existence of extremely short member

Existing Challenge

(4) Stability constraint

Optimal solution with slender elements

Different global constraints (b) vol = 0.1440 (c) vol = 0.1597 (d) vol = 0.1582 (e) vol = 0.1574י∳ ^F (f) vol = 0.1567 (g) vol = 0.1562 (h) vol = 0.1558 (i) vol = 0.1552

Source: AG. Weldeyesus *et al*, Truss geometry and topology optimization with global stability constraints, 2020, Structural and Multidisciplinary Optimization

Optimization with global stability

$$\begin{array}{l} \text{Minimize } \sigma = \max_{\substack{i=1,2,\cdots m_{\text{e}} \\ j=1,2,\cdots p}} \left(\sigma_{V,ij} \left(\boldsymbol{x}_{\text{free}}, \boldsymbol{y}_{\text{free}}, \boldsymbol{A} \right) \right) \\ \text{subject to } \frac{1}{\lambda^{\text{cr}}} \left(\boldsymbol{x}_{\text{free}}, \boldsymbol{y}_{\text{free}}, \boldsymbol{A} \right) \leq \frac{1}{\lambda_{\text{L}}}; \quad V \left(\boldsymbol{x}_{\text{free}}, \boldsymbol{y}_{\text{free}}, \boldsymbol{A} \right) \leq V_{\text{U}}; \\ \underline{\boldsymbol{x}}_{\text{free}} \leq \boldsymbol{x}_{\text{free}} \leq \overline{\boldsymbol{x}}_{\text{free}}; \quad \underline{\boldsymbol{y}}_{\text{free}} \leq \boldsymbol{y}_{\text{free}} \leq \overline{\boldsymbol{y}}_{\text{free}}; \quad \underline{\boldsymbol{A}} \leq \boldsymbol{A} \leq \overline{\boldsymbol{A}} \end{array}$$

Smallest positive eigenvalue:

$$\left(\boldsymbol{K}\left(\boldsymbol{x}_{\text{free}},\boldsymbol{y}_{\text{free}},\boldsymbol{A}\right)-\lambda\boldsymbol{K}_{G}\left(\boldsymbol{x}_{\text{free}},\boldsymbol{y}_{\text{free}},\boldsymbol{A}\right)\right)\boldsymbol{\Phi}=0$$

x_{free}: x coordinates of free nodes;
y_{free}: y coordinates of free nodes;
A : Cross-sectional areas
V : Structural volume

K : Elastic stiffness matrix

*K*_G : Geometry stiffness matrix

Force density method for shape optimization

Source: (left) JY Zhang, M Ohsaki. Adaptive force density method for form-finding problem of tensegrity structures. (Right) MO Ruy *et* al The natural force density method for the shape finding of taut structures

FDM is widely used in form-finding of tension and tensegrity structure

$$q = \frac{N}{L}$$
Force density Member length Diagonal matrix

$$x_{\text{free}} = -(\tilde{Q}_{\text{free}}^T \operatorname{diag}(q) \tilde{Q}_{\text{free}})^{-1} \tilde{Q}_{\text{free}}^T \operatorname{diag}(q) \tilde{Q}_{\text{fix}} x_{\text{fix}}$$

$$y_{\text{free}} = -(\tilde{Q}_{\text{free}}^T \operatorname{diag}(q) \tilde{Q}_{\text{free}})^{-1} \tilde{Q}_{\text{free}}^T \operatorname{diag}(q) \tilde{Q}_{\text{fix}} y_{\text{fix}}$$

Connectivity matrix

Introducing Force density method

Frame structure

FDM can not be directly applied

Introducing Force density method

Uncertainty in member stiffness

Uncertainty in nodal locations

Uncertainty in member stiffness

Uncertainty in intermediate nodal locations

Uncertainty in member stiffness

Uncertainty in cross-sectional areas

$$A_i' = A_i + \Delta A_i$$

A' for all elements in member *i*

Worst-case design with uncertainties $\theta = (\Delta x, \Delta y, \Delta A)$

100 β th (0< β <1) quantile of stress $\sigma^{\max-\beta}$ and $\gamma^{\max-\beta}$

Probability
$$\left\{ \sigma \left(\boldsymbol{x}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{y}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{A}; \boldsymbol{\theta} \right) \leq \sigma^{\max - \beta} \right\} = \beta$$

Probability $\left\{ \gamma \left(\boldsymbol{x}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{y}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{A}; \boldsymbol{\theta} \right) \leq \gamma^{\max - \beta} \right\} = \beta$

Probability
$$\left\{ \sigma \left(\boldsymbol{x}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{y}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{A}; \boldsymbol{\theta} \right) \leq \sigma^{\max - \beta} \right\} = \beta$$

Probability $\left\{ \gamma \left(\boldsymbol{x}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{y}_{\text{free}} \left(\boldsymbol{q} \right), \boldsymbol{A}; \boldsymbol{\theta} \right) \leq \gamma^{\max - \beta} \right\} = \beta$

Given *m* sets of
$$\theta_1, \theta_2, ..., \theta_m$$
, obtain *m* response
 $\sigma_1 = \sigma(x_{\text{free}}(q), y_{\text{free}}(q), A; \theta_1), ..., \sigma_m = \sigma(x_{\text{free}}(q), y_{\text{free}}(q), A; \theta_m)$
 $\gamma_1 = \sigma(x_{\text{free}}(q), y_{\text{free}}(q), A; \theta_1), ..., \gamma_m = \sigma(x_{\text{free}}(q), y_{\text{free}}(q), A; \theta_m)$

and place them in a descending order

$$\sigma_{1:m} \geq \ldots \geq \sigma_{k:m} \geq \ldots \geq \sigma_{m:m}; \gamma_{1:m} \geq \ldots \geq \gamma_{k:m} \geq \ldots \geq \gamma_{m:m}; 1 \leq k \leq m$$

Based on the statistical inference theory of order statistics

$$\alpha_{k} = \Pr\left\{F_{\sigma}\left(\sigma_{k:m}^{cr}\right) \ge \beta\right\} = \sum_{r=0}^{m-k} \binom{m}{r} \beta^{r} (1-\beta)^{m-r} \qquad \begin{array}{c} \text{Relation bet}\\ k \text{ and } \beta \end{array}$$
$$\alpha_{k} = \Pr\left\{F_{\gamma}\left(\gamma_{k:m}^{cr}\right) \ge \beta\right\} = \sum_{r=0}^{m-k} \binom{m}{r} \beta^{r} (1-\beta)^{m-r}$$

between

Relation between *k* and β ($\alpha_k = 0.9, m = 200$)

	_			_	_		-			_
k	1	2	3	4	5	6	7	8	9	10
в	0.989	0.981	0.974	0.967	0.960	0.954	0.948	0.942	0.936	0.930
k	11	12	13	14	15	16	17	18	19	20
в	0.924	0.918	0.912	0.907	0.901	0.895	0.890	0.884	0.878	0.873

$$\begin{array}{l} \text{Minimize } \sigma^{\max} = \max_{\theta \in \Omega} \sigma \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A; \theta \right) \\ \text{subject to } \gamma^{\text{cr,max}} = \max_{\theta \in \Omega} \left(\gamma^{\text{cr}} \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A; \theta \right) \right) \leq \gamma_{\text{U}}; \quad V \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A \right) \leq V_{\text{U}}; \\ \underline{q} \leq q \leq \overline{q}; \quad \underline{A} \leq A \leq \overline{A} \\ \text{is rewritten by using order statistics} \\ \text{Minimize } \sigma_{k:m} \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A; \Theta \right) \\ \text{subject to } \gamma^{\text{cr}}_{k:m} \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A; \Theta \right) \leq \gamma_{\text{U}}; \quad V \left(x_{\text{free}} \left(q \right), y_{\text{free}} \left(q \right), A \right) \leq V_{\text{U}}; \\ \underline{q} \leq q \leq \overline{q}; \quad \underline{A} \leq A \leq \overline{A} \end{array}$$

Smaller order $k \rightarrow$ **Larger robustness level**

Penalization method for singularity phenomenon

Singularity in stress and stability Large element stress **Small cross-sectional area Small linear buckling** load **Penalization method for small** A $\hat{\sigma}_{V,i} = \left(A_i / \overline{A}\right)^{\eta} \max_{i=1,2...n} \left(\sigma_{V,ij}\right) \qquad \hat{K}_{G,i} = \left(A_i / \overline{A}\right)^{\rho} \times K_{G,i}$

Fig. 2 Feasible domain under formulation (3)

Source: X Guo *et al*, Optimum design of truss topology under buckling constraints, 2005, Structural and Multidisciplinary Optimization

Numerical Example

> Example:

Initial condition: $F = 200 \text{ kN}; E = 2 \times 10^{11} \text{ Pa}; V_{\text{U}} = 0.02 \text{m}^3$ Sample size m = 150; k = 1;

Design variables: $A = (A_1, A_2, ..., A_{10}); q = (q_1, q_2, ..., q_{10})$ $1 \times 10^{-7} \text{m}^2 \le A \le 0.05 \text{ m}^2; -1000 \le q \le 1000$

Solved by generalized reduced gradient (GRG) method

Pin support

Numerical Example

Optimal results (at nominal condition)

Considering Uncertainty

Without Uncertainty

110

Solution	σ (MPa)	$\sigma_{1:150}^{\max}$ (MPa)	$\gamma^{\rm cr}$	λ^{cr}	$\gamma_{1:150}^{ m cr}$	$\lambda_{1:150}^{cr}$	<i>V</i> (m ³)
R	103.7015	234.7208	0.0868	11.5117	0.0914	10.9328	0.02
D	84.5490	354.7003	0.2899	3.4490	0.3193	3.1314	0.02

Numerical Example

Optimal results (at worst case condition)

Solution R

Solution D

1000

Solution	σ (MPa)	$\sigma_{ m 1:150}^{ m max}~(m MPa)$	$\gamma^{\rm cr}$	λ^{cr}	$\gamma_{1:150}^{ m cr}$	$\lambda_{1:150}^{cr}$	V (m ³)
R	103.7015	234.7208	0.0868	11.5117	0.0914	10.9328	0.02
D	84.5490	354.7003	0.2899	3.4490	0.3193	3.1314	0.02

Conclusions and future work

> The proposed method has the following conclusions :

- The robustness of the objective and constraints are represented by the *k*th order statistics.
- An auxiliary truss to which the FDM is applied is used to define the geometry of the frame.
- The stress and geometrical stiffness matrix of a thin element is penalized with respect to the cross-sectional area.
- Solutions with and without considering uncertainties may have different shapes and topologies.

Conclusions and future work

>Future work:

- Since the uncertainty is directly incorporated in the optimization problem, the analytical gradient is hard to derive. Maybe decoupling or approximation technique would be useful for improving its convergence and application on large-scale problem.
- The robustness is determined directly by the order statistics, and maybe summary statistics (such as statistical moments) would be helpful to give the similar information of uncertainty with smaller sample size.

Thanks for your kind attention

Reporter : Wei Shen

