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Uncertainty in real world

Suppose uncertainty exists 

in Young’s modulus

Background Deterministic design

Considering Uncertainty

Source: A. Asadpoure et al, Robust topology optimization of 

structures with uncertainties in stiffness - Application to truss 

structures, 2011, Computers and Structures.



(1) Unknown distribution of uncertainty

Existing Challenges

 

 
 fail

; 0

Minimize: ;

Subject to: ;
g

f

P d P


   X U

X U

X U U

Two kinds of probability-based design

(i) Reliability-based design

(ii) Robust design
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(2) Exact value of worst-case event

Existing Challenges
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Handle the uncertainty with worst-case design

Hard to obtain the exact

worst structural response

even if Θ is simple



Existing Challenges

(3) Melting nodes

Stiffness Matrix

P

P

Desirable to avoid existence of extremely short member

Singular

Red nodes

become close



(4) Stability constraint

Existing Challenge

Different global 

constraints 

Optimal solution with 

slender elements

Source: AG. Weldeyesus et al, Truss geometry and topology optimization with 

global stability constraints, 2020, Structural and Multidisciplinary Optimization



Optimization with global stability
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xfree: x coordinates of free nodes; 

yfree: y coordinates of free nodes; 

A    : Cross-sectional areas

V : Structural volume

K    : Elastic stiffness matrix

KG : Geometry stiffness matrix
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Smallest positive eigenvalue:
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Force density method for shape optimization

FDM is widely used in form-finding 

of tension and tensegrity structure
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Member length
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Source: (left) JY Zhang, M Ohsaki. Adaptive force

density method for form-finding problem of tensegrity

structures. (Right) MO Ruy et al The natural force

density method for the shape finding of taut structures
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Pin joint 

Auxiliary truss structure

Only axial force

Introducing Force density method

Frame structure
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Axial force;

Shear force;

Moment;
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FDM can not be directly applied
Used to determine the location of 

nodes of frame structure



Minimize : 

Subject to: 

Pin joint 

Auxiliary truss structure

Only axial force

Frame structure
Rigid joint 

Axial force;

Shear force;

Moment;
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nodes
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Uncertainty in member stiffness

Uncertainty in nodal locations
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Uncertain locations

Randomness

Nominal locations



Uncertainty in intermediate nodal locations

Four beam elements for 

one member 

Uncertainty

Vertical within 

eccentricity e

Uncertainty in member stiffness
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Uncertainty in cross-sectional areas

A’ for all elements 

in member i

Uncertainty in member stiffness



Approximate worst-case using order statistics
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Worst-case design with uncertainties  , ,   θ x y A

Relaxed

100βth (0<β<1) quantile of stress σmax-β and γ max-β
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Given m sets of θ1, θ2, …, θm , obtain m response 

         

         
1 free free 1 free free

1 free free 1 free free

, , ; , , , , ;

, , ; , , , , ;

m m

m m

   

   

 

 

x q y q A θ x q y q A θ

x q y q A θ x q y q A θ

and place them in a descending order
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Relation between 

k and β

k 1 2 3 4 5 6 7 8 9 10

β 0.989 0.981 0.974 0.967 0.960 0.954 0.948 0.942 0.936 0.930

k 11 12 13 14 15 16 17 18 19 20

β 0.924 0.918 0.912 0.907 0.901 0.895 0.890 0.884 0.878 0.873

Relation between k and β (αk = 0.9, m = 200)

Based on the statistical inference theory of order statistics
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Approximate worst-case using order statistics



is rewritten by using order statistics

Smaller order k → Larger robustness level 
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kth order statistics with sample 

size m and confidence level αk

Approximate worst-case using order statistics



Penalization method for singularity phenomenon

Singularity in stress and stability

Source: X Guo et al, Optimum design of truss

topology under buckling constraints, 2005,

Structural and Multidisciplinary Optimization

Small cross-sectional area

Small linear 

buckling load 

Large element 

stress

Penalization method for small A
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Example:

Numerical Example

Initial condition:

F = 200 kN; E = 2×1011 Pa;VU = 0.02m3

Sample size m = 150; k = 1;

Design variables:

A = (A1, A2, …, A10);q = (q1, q2, …, q10)

1×10-7m2 ≤ A ≤ 0.05 m2 ; -1000 ≤ q ≤ 1000

Solved by generalized reduced gradient

(GRG) method
Pin support



Numerical Example

Considering Uncertainty Without Uncertainty

Optimal results (at nominal condition)

Solution R Solution D



Numerical Example

Optimal results (at worst case condition)

Node 3

Solution R Solution D

Node 3



Conclusions and future work

The proposed method has the following conclusions：

• The robustness of the objective and constraints are represented

by the kth order statistics.

• An auxiliary truss to which the FDM is applied is used to define

the geometry of the frame.

• The stress and geometrical stiffness matrix of a thin element is

penalized with respect to the cross-sectional area.

• Solutions with and without considering uncertainties may have

different shapes and topologies.



Future work：

Conclusions and future work

• Since the uncertainty is directly incorporated in the optimization

problem, the analytical gradient is hard to derive. Maybe

decoupling or approximation technique would be useful for

improving its convergence and application on large-scale problem.

• The robustness is determined directly by the order statistics, and

maybe summary statistics (such as statistical moments) would be

helpful to give the similar information of uncertainty with smaller

sample size.
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